Multilevel ILU With Reorderings for Diagonal Dominance
نویسنده
چکیده
This paper presents a preconditioning method based on combining two-sided permutations with a multilevel approach. The nonsymmetric permutation exploits a greedy strategy to put large entries of the matrix in the diagonal of the upper leading submatrix. The method can be regarded as a complete pivoting version of the incomplete LU factorization. This leads to an effective incomplete factorization preconditioner for general nonsymmetric, irregularly structured, sparse linear systems.
منابع مشابه
A Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices
A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. ...
متن کاملParallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems
We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...
متن کاملDistributed block independent set algorithms and parallel multilevel ILU preconditioners
We present a class of parallel preconditioning strategies utilizing multilevel block incomplete LU (ILU) factorization techniques to solve large sparse linear systems. The preconditioners are constructed by exploiting the concept of block independent sets (BISs). Two algorithms for constructing BISs of a sparse matrix in a distributed environment are proposed. We compare a few implementations o...
متن کاملOn Complex Preconditioning for the solution of the Kohn-Sham Equation for Molecular Transport
This paper analyzes the performance of a few preconditioners for solving the complex linear systems which originate from the application of real space pseudopotential methods in the study of electron transport properties of nanoscale junctions. These linear systems of equations are part of a self-consistent loop to compute the charge density and corresponding potential at the nanoscale junction...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 27 شماره
صفحات -
تاریخ انتشار 2005